Расчет и проектирование в среде Energy

Введение

Проектирование воздушных линий (ВЛ) электропередачи – задача трудоемкая, в решении которой, как правило, задействуются сразу несколько подразделений проектной организации. Изыскательские работы и планирование трассы линии выполняются в отделе изысканий, расчет проводов и тросов, расстановку опор производят в линейном отделе, за расчет фундаментов и прочность опор отвечают проектировщики-строители, а проектированием оптического кабеля, подвешиваемого на опоры ВЛ или используемого в качестве грозозащитного троса, занимаются проектировщикисвязисты. Поэтому автоматизация проектирования ВЛ должна охватывать всю технологическую цепочку.

Проектирование механической части линии электропередач (после решения всех электротехнических вопросов) начинается с анализа результатов изыскательских работ и создания плана трассы линии электропередачи.

Планирование трассы и обработка результатов изысканий могут выполняться в одной из геодезических программ, таких как GeoniCS. Результатом такой обработки изысканий традиционно является чертеж с описанием трассы, включающий изображение профиля, описание условий геологии и пересечений, информацию об углах поворота трассы и т.п. Эти данные и являются исходными для расстановки опор.

Программный комплекс EnergyCS Line предназначен для автоматизации расчетов, связанных с расстановкой опор по трассе ВЛ, проверки габаритных расстояний для пролетов и пересечений, оценки расстояний до токоведущих частей и проверки на схлестывание, расчетов нагрузок, действующих на детали опор и фундаменты, а также для получения спецификаций оборудования. Кроме проектирования ВЛ, программа может использоваться для расчетов при проектировании гибких ошиновок ОРУ и кабелей волоконно-оптических линий связи, подвешиваемых на опоры ВЛ.

Общая постановка задачи

Проектируемая воздушная линия может иметь сложную конфигурацию и состоять из нескольких линий, а те, в свою очередь, - из множества анкерных участков. Конечные точки анкерных участков – анкерные опоры. Каждой линии, каждому топологическому участку соответствует своя трасса (рис. 1).

Программный комплекс EnergyCS Line позволяет решать следующие задачи проектирования ВЛ:

- расстановка анкерных опор по трассе
- расстановка промежуточных опор по анкерным участкам на основе описания профиля и данных о пересекаемых объектах;
- проверка габаритов пересечений в нор-

- мальных и послеаварийных режимах;
- получение таблицы монтажных тяжений и монтажных стрел провисания с учетом остаточной деформации для фазных проводов и грозозащитных тросов:
- проверка допустимых расстояний между грозозащитным тросом и верхним фазным проводом;
- оценка устойчивости гирлянд изоляторов и расчет балластов;
- оценка сближений проводов и допустимых расстояний до токоведущих частей;
- расчет нагрузок на опоры и формирование задания строителям на проектирование фундаментов;
- оценка необходимости применения гасителей вибрации и расчет расстояний их крепления;
- получение ведомостей оборудования и заказных спецификаций;
- расчет отвода земель на период строительства и в постоянное использование (в разработке);

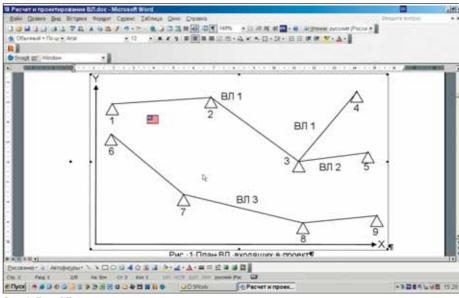


Рис. 1. План ВЛ, входящих в проект

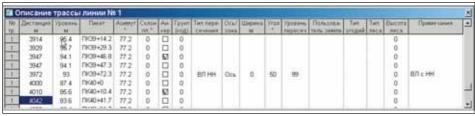
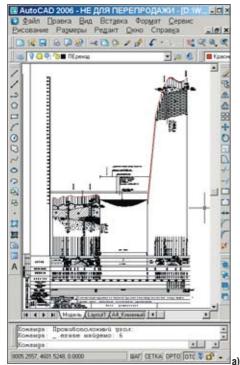



Рис. 2. Таблица описания трассы

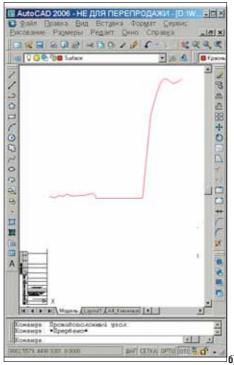


Рис. 3. Подготовка чертежа для ввода профиля

No	Обозна-	X	W.	Дистанция	Fluxor,	Марка		Дополнит гирлянды		BOK, M	ВОК, м	
111	Портал	0	0	0	DHD+0	Y110-2	10.5					m
1.2	1	0	0	70.5	TH00+70.5	Y110-2	10.5		1.4	+		
13	4	0	0	487	TK4+67.2	Y110-2	10.5		100	12		
1.4	9	0	0	1300	TK13+0	Y110-2	10.5		1.6	43		
15	11	0	0	1600	DK16+0	Y110-2	10.5		1.4	-		
1.6	14	0	0	2000	TH20+0	Y110-2	10.5					
17	16	0	0	2200	DK22+0	Y110-2	10.5		- 4	+		
18	21	0	0	2954	TRQ9+64	V110-2	10.5			- 12		
W. W.	94	-	-	4666	A							120

Рис. 4. Таблица информации об анкерных опорах

■ расчет вырубки просек (в разработ-

Описание профиля трассы в программе представляется в табличном виде (рис. 2). Эта таблица, конечно, может быть заполнена и вручную, но основной способ ее заполнения – экспорт данных из геодезической программы посредством файла обмена или буфера обмена.

Таблица описания трассы содержит как обязательные, так и необязательные для заполнения колонки. Так, Дистанция (расстояние от начала трассы) и Уровень (высота точки измерения) — это обязательные параметры. Если не вводить обозначения пикетов, они сформируются из дистанции автоматически, однако при сбое в их обозначениях или при наличии рубленых пикетов заполнение колонки Пикет обязательно. Если

введены углы направления трассы или заданы признаки установки анкерной опоры, то ввод описания трассы позволит автоматически ввести список анкерных опор и описания анкерных участков. Кроме того, могут быть определены и описания пересечений.

Положения анкерных опор задаются их пикетами. Можно также ввести координаты точек их размещения на плане.

Программа позволяет на основе профиля трассы каждого участка выполнить расстановку промежуточных опор; проверить габариты на проблемных участках ВЛ и габариты пересечений с другими коммуникациями и дорогами; выполнить расчет мест установки гасителей вибрации; подготовить цифровую информацию для построения итоговых чертежей профилей с расстановкой опор

по трассе. EnergyCS Line поддерживает текстовые форматы данных на основе CSV и XML, а также текст со знаками табуляции в качестве разделителей.

При невозможности использовать геодезическую программу, способную сформировать табличное описание трассы, информацию о профиле можно получить и непосредственно из чертежа AutoCAD. Для считывания кривой описания профиля необходимо, чтобы линия поверхности состояла из отрезков и полилиний и была вычерчена в особом слое (рис. За и 3б). При вводе описания трассы из AutoCAD EnergyCS Line запрашивает имена слоев для описания поверхности и пересечений.

Информация об анкерных опорах вводится в таблицу, приведенную на рис. 2, и содержит данные о:

- типе опоры и ее высоте (тип опоры выбирается из справочной базы данных);
- типе изоляторов;
- числе изоляторов.

Информация об анкерных участках вводится в таблицу, приведенную на рис. 4. Участки определяются конечными анкерными опорами: одна анкерная опора условно считается началом участка, а вторая - его концом. Для каждого участка должны быть заданы:

- длина (если координаты анкерных опор заданы, то длина вычисляется автоматически):
- расчетная (ожидаемая) длина проле-
- тип провода (тип провода выбирается из справочной базы данных);
- число проводов в фазе;
- допустимое максимальное тяжение провода на участке, если оно по какой-либо причине должно быть меньше допустимого для провода;
- тип промежуточной опоры и ее высота (тип опоры выбирается из справочной БД);
- допустимый габарит для участка;
- максимальная допустимая длина пролета;
- тип изолятора (выбирается из справочника):
- число изоляторов в гирлянде и число гирлянд на фазу ВЛ.

Для линии вводится таблица точек пересечений. Если в описании трассы колонки с параметрами пересечений заполнены, то строки таблицы пересечений формируются автоматически, в противном случае таблица пересечений вводится вручную или импортируется из внешнего источника.

Таким образом, исходные данные о проектируемой ВЛ вводятся в таблицы, изображенные на рис. 4-6. В программе эти таблицы могут заполняться как

B) /	нке	рован	ые уч	астки В	UT 🕨													×
No.	Код	Мест- ность	Charles Aven April	Длина участка	Макт. дле- на гролёта	Допустимый габарит	Марка опоры промежуточной	Высота подвеса	Марка провода	Допустимое тижение	Допустимое напряжение	Число фаз	Изоляторы вняера 1	Арматура1 длина*вес	Изолиторы анкера 2	Арматура2 длина*вес	Victoria Constitution (Constitution)	Армату <u>г</u> ∗ длина*ε
2	3	A	64.4	417	178	7	Π6110-B	13.5	AC-150/24	26500	153	6	11*TIC70-E	3C-10587	11°DC70-E	3C-10587	ЛК70/110-AW	30-1057-
3	4	A	0	813	178	7	Π5110-8	13.5	AC-150/24	26500	153	- 6	11*TC70-E	3C-10587	11*f1C70-E	30-10587	DICTO/110-AIV	3C-1057
4	5	A	0	300	178	7	Π 6 110-8	13.5	AC-150/24	26500	153	6	11*TIC70-E	3C-10587	11*DC70-E	3C-10587	ЛК70/11B-AIV	3C-1057
5	6	A	0	400	178	7	Π5110-8	13.5	AC-150/24	26500	153	6	11°TC70-E	3C-10587	11°DC70-E	3C-10587	ЛК70/110-AIV	3C-1057
6	7	A	.0	200	178	7	Π6110-8	13.5	AC-150/24	26500	153	6	11*TIC70-E	3C-10587	11*f7070-E	30-10587	JR/70/110-AIV	3C-1057
7	8	A	0	754	178	7	Π6110-B	13.5	AC-150/24	26500	153	6	11°ПС70-Е	3C-10687	11°DC70-E	3C-10587	ЛК70/110-AIV	3C-1057
8	9	A	44.5	75	178	7	Π5110-8	13.5	AC-150/24	26500	153	- 6	11*11C70-E	3C-10587	11°DC70-E	30-10587	JHG0/110-AIV	3C-1057 .
3	40		** =	J	470	7	netino	49.5	AC SENES	ncenn	153	=					DUTCH 4D ARA	on one T

Рис. 5. Таблица с информацией об участках

	a n	ересеч	ния лин	ии 1	1										×
		Дистан	2000	004	CONTROL OF THE PROPERTY OF THE	Ten		Yron	10.5 SANSONA (NO.)	Уровень	5525900000	Доп.расст.			*
Ц	TRUE I	ipen, te		30m		200	M	1000	до еперы	u	w	до провода	HICE ON THE	tp,°C	44
Ш	40	1464	FIK14+54.4	Oca	Aatoban	- AD	20	90	30	96.1	0.3	7	Више	1. Высшей температуры	
	1	2062	ПКО0+62.4	Oca	BITICEN	B/I BH	3	40	15	120	29.9	4	Hors	15	
I	1	3080	FHC00+60.4	Ota	BΠ c ΩC	лс	3	65	10	100	7.4	3	Buwe	1 Высшей температуры	
I	1 1	3495	TH34+64.9	Зона	на Касулина	эжд	1	75	30	104	8.94	12	Buue	9.Грозовой активности с ветром	
I	1	3972	ПК39+72.3	Oth	ВЛсНН	вл нн	3	50	10	99	5.96	5	Beilie	15	20
I	0101	4179	ΠK41+79.3	fice.	Газопровол налзе	TIT	- 3	.90	20	98	4.85	7	Plantin	1. Яменней температуры	*

Рис. 6. Таблица описания пересечения коммуникаций

Nio YY.	No on.	Обозна- чение	Дист.	Дист.на участке	Длина пролета	Тип	Высота подвесь
3/3	A1:3	4	487	0	177	Y110-2	10.5
4	2	5	664	177	177	ПБ110-8	13.5
4	3	- 6	841	354	177	ΠБ110-8	13.5
4	4	7	1018	531	177	Π5110·8	13.5
4	5	8	1195	708	105	∏5110-8	13.5
	A1:4	9	1300	813		Y110-2	10.5

Рис. 7. Таблица расставленных опор

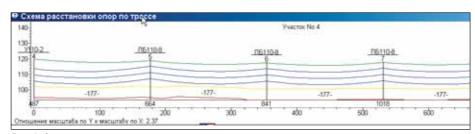


Рис. 8. Схема расстановки опор по трассе участка

вручную, так и посредством системного буфера обмена.

Все вышеперечисленные таблицы в основном могут быть заполнены автоматически на основании данных таблицы описания трассы. В задачу проектировщика-линейщика входит ввод дополнительной информации о трассе, которую изыскатели обычно не поставляют, принятие решения о расстановке опор, проверка габаритов пересечений и т.п.

Расстановка опор выполняется по участкам с использованием таблицы, приведенной на рис. 7.

Отдельно для каждого участка выполняется расчет, связанный с расстановкой опор по трассе: расчет удельных и погонных нагрузок в соответствии с требованиями ПУЭ, выбор исходного и расчетного режимов на основе анализа критических пролетов, расчет кривой провисания. Кроме того, последовательно, от начала к концу участка, определяется оптимальное положение каждой промежуточной опоры с учетом зон запрета установки опор. Расчетчик всегда имеет возможность вмешаться в автоматическую расстановку опор: положение отдельных промежуточных опор можно задать принудительно, а группы опор расставить принудительно равномерно. В процессе расстановки в распоряжении расчетчика - таблица расставленных опор (рис. 7). Графическая схема расстановки опор по трассе участка представлена на рис. 8. Для любого пролета может быть выведена на экран таблица с описанием кривой провисания

провода с заданным шагом (рис. 9), где выводятся:

- уровень поверхности;
- высота точки провода;
- расстояние от поверхности до провола:
- стрела провисания провода;
- напряжение и тяжение в соответствующей точке провода.

Данные, представленные в таблице, можно посмотреть на графике (рис. 10). Для любого пролета линии могут быть получены монтажные кривые - зависимости стрел провеса, тяжений и напряжений от температуры в табличном и в графическом виде.

Для пересечений выполняется специальный расчет габаритов для соответствующих режимов (рис. 11).

Кроме стандартного расчета для провода может быть выполнен расчет габаритов при произвольно заданных режимах. Для выбранного анкерного пролета в таблице, приведенной на рис. 12, можно задавать произвольные сочетания исходных и расчетных режимов и при этом получать соответствующие максимальные стрелы провеса. Кроме того, существует возможность указать желаемую стрелу провеса и получить необходимые параметры исходного режима.

Результаты

Одним из важных принципов расчетной программы является проверяемость полученных результатов. Проверка достоверности и поиск вероятных ошибок в исходных данных значительно упро-

М Крива	Year	Year AC ₁ 1500	npoeoga kts DC "Vpn tox 4 - 9, Lnp 4 Se=153H/c D*C; tp=5*C.	=169 M; B MM Se=1		
От опоры	1	Отметка	От земли до провода		Taxasare H	Наприкорние Н/ка мм
0	462	107		11.30	2550	133
20	94.7	106	11.3	0.997	22974	133
40	96.7	105	9.42	1.74	22961	133
60	95.5	105	9	2.23	22962	133
80	95.3	104	8.85	2.46	22946	132
100	96	104	6.94	2.45	22944	132
120	94.8	104	9.29	2.17	22946	132
140	94.2	104	10.2	1.64	22961	133
160	93.8	105	11.3	0.964	22960	133
177						

Рис. 9. Таблица кривой провисания провода пролета

щаются, если имеется возможность вывода промежуточных результатов. Так, для механического расчета промежуточными результатами являются удельные и погонные нагрузки (рис. 13). В таблице определения критических пролетов и выбора исходных и расчетных режимов (рис. 14) не только приводятся промежуточные результаты, принятые для расчета габаритов, но и устанавливаются стандартные параметры исходного и расчетного режимов, принимаемые для расчетов. Таким образом, отменяется изменение режимов, внесенное в таблицу, изображенную на рис. 13.

Программа EnergyCS Line позволяет получить таблицу монтажных максимальных стрел провеса (рис. 16); выполнить расчет, связанный с определением мест установки гасителей вибрации (рис. 15); определить нагрузки от провода на опоры и натяжение грозозащитного троса для обеспечения необходимого защитного угла по всей линии, а также выполнить другие расчеты.

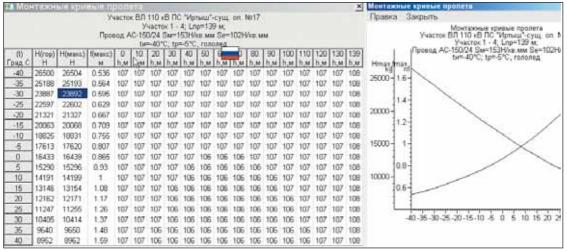


Рис. 10. Таблица и график монтажной кривой для провода пролета

Ne you	Дистанция м	Пикет базы	Ось/ Зана	Наименование пересечения	Tien	Ширина м	Yron *	Расстояние до опоры	Доп расст. до опоры	Высота пересечения	Провод к пересечению	Допустимое положение	1p 1C	Макс. Страла	Стрела в т. пересечения
1	1464	DK14+64.4	Oct	Автобан	АД	20	90	14.4	30	0.3	Выше на 12	Berme wa 7	1. Высшей температуры	1.79	0.621
1	2062	TIK20+62.4	Oca	ВЛ с ВН	вл вн	3	40	62.4	15	29.9	Ниже на 13.4	Ниже на 4	tp=15	0.999	0.998
1	3060	DECID+60.4	Oca	BACAC	nc	3	65	20.6	10	7.4	Выше на 2.57	Выше на 3	1 Высшей температуры	0.422	0.421
1	3485	TH34+64.9	Tores	на Косулино	00677	1	75	15.1	30	8.94	Выше на 1.56	Выше на 12	9 Грозовой эктивности с ветром	0.37	0.19
1	3972	TH39+72.3	Ось	ВЛІСНИ	вл нн	3	50	25.5	10	5.96	Выше на 1.93	Выше на 5	tp=15	0.253	0.243
1	4179	TR/41+79.3	Ocs.	Гаропровод надре	-111	. 3	90	15.5	20	4.85	Выше на 3.03	Више на 7	1. Высшей температуры	0.189	0.186

Рис. 11. Таблица расчета габаритов пересечений

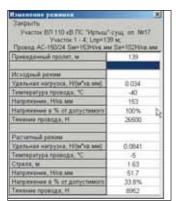


Рис. 12. Изменение исходных и расчетных режимов

	Yvacrox BR 110 xB RC "Vpn Yvacrox 1 - 4, Lnp Rpopog AC-150/24 Swi-153H/w Buccra nputegewhoro yest	=139 M; 0 MM Se=	102H/	O.MM							
N	Наименование нагрузки	Hopman H/s		Рр/Рн	Расчетная Н/м	Удельні Н/(м*ж».					
t	Вертикальная от собственного веся провода	5.8	9	. 1	5.89	0.034	<u> </u>				
2	Вертикальная от веса гололеда	13.4	4	0.65	8.68	0.0501					
3	Вертикальная от веся провода со голольдом	19.7	2	0.757	14.6	0.0841					
4	Горизонтальная от ветра на провод без голольда	7.7	🛤 Си	стемат	гический р	асчет р	вжимов				3
5	Горизонтальная от ветра на провод с голольдом Результирующая нагрузка от провода без голольда	9				4	жВ ПС "Ирты часток Портал 4 Sм=153H/кв	1-1			
7 B	Результирующая нагрузка от проводЫС голольдом Горизонтальная нагрузка от ветра W=50Па	0.4		Наимен	ование режи	us his	Температура °С	Нагрузка Н/(м*кв.мм)	Наприжение Н/(ка.мм)	Стрела	Yron.
9	Горизонтальная нагрузка от ветра W=0.06Wo	0.7	1.Выси	300 pag	тературы	-	+40	0.034	41.1	0.556	0
10	Результирующая нагрузка от от ветра W=50Па	- 5	2.Hetu	ей темп	ературы	- 1	-40	0.034	153	0.149	0
11	Результирующая нагрузка от от вегра W=0.06Wo	- 5.5	3.Сред	жегодов	ой температу	ры	0	0.034	91.7	0.249	0
			4.Fo.to:	педа бе:	г остра		-6	0.0841	108	0.499	0
ис	. 13. Таблица удельных нагрузок провода		5.Havi6	ольшего	ветра без го	поледа	+15	0.034	70.2	0.326	0
					о ветра при го		-5	0.107	113	0.604	38.4
			7 Havi6	ольшей	нагрузки (5 и	un 6)	-5	0.107	113	0.604	38.4
					ивности без в		+15	0.034	70.2	0.326	0
					ивности с вет		+15	0.0344	70.3	0.329	8.97
_					й стрелы (1 и		+40	0.034	41.1	0.556	0
. I	аблица расчета критических пролетов, выб	oopa	11.3ne	ктричес	юй перегрузн	OH (+70°C)	+70	0.034	24.1	0.95	-0

12. Условий монтажа (-15°C)

13. Наибольшей стрелы (10 или 11)

-15

0:0344

0.034

114

Рис. 14. Таблица расчета критических пролетов, выбора стандартных исходных и расчетных режимов

								Person	и среди	ноэксплу	атационні	ий, tp=D°C							
Nix	Анкерные опоры	Мест-	Длина участка	Привед.	Тип провода	Диаметр мм	Напряж. доп. te	Напряж. при te	Уд. нагр.	Место1	Место2 мм	Ten F/B	Kon-	Тип троса	Диаметр мм	Наприж. доп. te	Напряж. при te	Уд.	Med
2	Портал-1	A	70.5	70.5	AC-150/24	17.1	102	91.7	0.034	900	1100	TTT-1.6-11-450/23	12	C 50	9.1	280	280	0.0841	55
3	1-4	A	417	139	AC-150/24	17.1	102	94.9	0.034	900	1100	TTT-1.6-11-450/23	36	C 50	9.1	290	290	0.0841	56
4	4.9	Α.	813	169	AC-150/24	17.1	102	96.9	0.034	900	1100	TTT-1.5-11-450/23	60	C 50	9.1	200	280	0.0841	55
5	9-11	A	300	150	AC-150/24	17.1	102	95.6	0.034	900	1100	FTIT-1.6-11-450/23	24	C 50	9.1	280	280	0.0841	55
6	11-14	A	400	145	AC-150/24	17.1	102	95.3	0.034	900	1100	TTT-1.6-11-450/23	36	C 50	9.1	290	280	0.0841	55

Рис. 15. Таблица расчета мест установки гасителей вибрации

No:	Опоры	Диоп	Припед	Марка	Марка	Опоры	Дама	Измерение	<<	п	n.	0	0	0	А		>>	55		T	- 10	
196	участка	участка	пролет	провода	троса	пролета	пролета	единиця	-40*	-38*	-20*	+10*	0.	+10°	+20*	+30*	+40*	~4U*	-38°	-20°	-10°	12
2	Портал-1	70.5	70.5	AC-150/24	C 50		11111111	Тижение, Н	29150	26441	23746	21069	18423	15826	13313	10947	8630	18209	17055	15905	14760	1
		Can have		AC-150/24	C 50	Портал-1	70.5	Стрела, м	0.136	0.15	0.167	0.188	0.215	0.25	0.297	0.362	0.448	0.14	0.149	0.16	0.172	(
3	1.4	417	139	AC-150/24	C 50			Тяжение, Н	29150	26504	23891	21326	18830	16437	14195	12166	10408	17988	16875	15774	14688	
		0335		AC-150/24	C-50	1-2	139	Стреля, м	0.494	0.543	0.602	0.675	0.764	0.876	1.01	1.18	1.38	0.549	0.586	0.627	0.673	1.
				AC-150/24	C 50	2-3	139	Стрела, м	0.488	0.536	0.595	0.667	0.755	0.865	1	1.17	1.37	0.549	0.585	0.626	0.673	1.

Рис. 16. Таблица монтажных максимальных стрел провеса

0.202 8.97

0.95

Анкерный участок (номера onop)	Длина анкерного участка м	Длина при- веденного пролета м	Номера опор пролета	пролета	Марка провода и троса	Измерение	-30*	-20°	-10*	0*	+10*	+20*	+30*	+40°
1-4	1049	350			AC-400/51 DNO-5968		22121 5949	21303 5807	20561 5673	19884 5548	19265 5430	18696 5319	18171 5213	17685 5114
			1-2	350	AC-400/51 DNO-5968		10.2 10.7	10.6	10.9	11.3 11.4	11.7	12 11.9	12.4 12.2	12.7
			2-3	362	AC-400/51 DNO-5968		10.8	11.3	11.7	12.1	12.4 12.5	12.8 12.8	13.2	13.6
			3-4	337	AC-400/51 DNO-5968		9,41 9.89	9.77 10.1	10.1	10.5 10.6	10.8 10.8	11.1	11.5	11.8
4-5	451	451			AC-400/51 DNO-5968		19268 5879	18909 5792	18568 5708	18244 5627	17936 5549	17642 5474	17362 5403	17094 5333
			4-5	464	AC-400/51	74477288	19.4	19.8	20.2	20.5	20.9	21.2	21.6	21.9
При м терполяци		водов и трос	V20.7131.142	451	DNO-5968		17.9	18.2	18,5 экные с	18.8 трелы г	19 провеса	19.3 опреде	19.5 пять пу	19.8 TeM ##
терполяци Таблі	и. Ицы стрел пр	ровеса соста	ов в усло	неиях прог	DNO-5968 иежуточны следующей	Стрела, м	17.9 мператуј одов и 1	18.2 ры монт тросов	амный с	трелы г	провеса		0.00000000	SMORRE
терполяци Таблі	и. Ицы стрел пр	ровеса соста	ов в усло	неиях прог	DNO-5968 иежуточны следующей	стрела, м к эначений тем вытяжки прок	17.9 мператуј одов и 1	18.2 ры монт тросов	амный с	трелы г	провеса		0.00000000	SMORRE
терполяци Таблі	и. Ицы стрел пр	ровеса соста	ов в усло	наиях прог учетом по водов и тр	DNO-5968 иежуточны следующей	з эначений тех к эначений тех вытикни пров же расчетные	17.9 мператуј одов и ч условия	18.2 ры монт тросов	амный с	трелы г	провеса		пять пу	тем ин-
терполяци Таблі	и. Ицы стрел пр	ровеса соста	ов в усло	наиях прог учетом по водов и тр	DNO-5968 межуточны следующей осов, а так	з эначений тех к эначений тех в вытяжки пров же расчетные	17.9 мператур одов и ч ус ловия	18.2 ры монт тросов в соотв	акные с етствии	трелы г г с <u>ПУЗ</u>	провеса - 7	спреде	лять пу	Лесто
терполяци Таблі	и. Ицы стрел пр	ровеса соста	ов в усло	наиях прог учетом по водов и тр	DNO-5968 межуточны следующей осов, а так	з эначений тех к эначений тех в вытяжки пров же расчетные	17.9 мператур одов и ч ус ловия	18.2 ры монт тросов в в соотв	акные с етствии	трелы г г с <u>ПУЗ</u>	провеса - 7	опреде	пять пу	тем ин-
герполяци Таблі	и. Ицы стрел пр	ровеса соста	ов в усло	не и проведения пробедения проведения примения проведения примения проведения примения проведения примения при	DNO-5968 межуточны следующей осов, а так	з эначений тех к эначений тех в вытяжки пров же расчетные	17.9 мператур одов и ч ус ловия	18.2 ры монт тросов в соотв	акные с етствии	трелы г г с <u>ПУЗ</u>	провеса - 7	спреде	пять пу	Лесто

Рис. 17. Монтажные тяжения и монтажные стрелы в MS Word

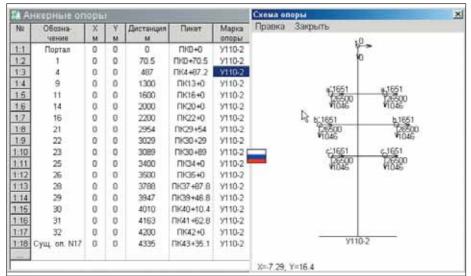


Рис. 18. Представление расчета нагрузок на опору

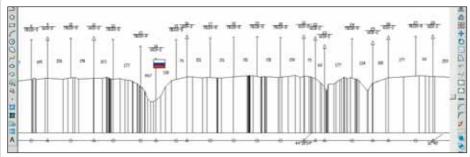


Рис. 19. Расстановка опор по трассе в AutoCAD

Все результаты расчета и исходные данные, представленные в таблицах программы, могут быть переданы в заранее заготовленные таблицы MS Word (рис. 17) как с использованием технологии ActiveX, так и через системный буфер обмена. Все графические рисунки, предоставляемые программой, могут быть вставлены в документ MS Word в качестве иллюстраций к расчету.

Расчет нагрузок от проводов на опоры наносится на схему опоры

(рис. 18) и может быть документирован в MS Word.

В программе предусмотрена возможность нанесения расставленных опор на существующий чертеж описания профиля трассы с указанием номеров и марок, длин пролетов, габаритов пересечений (рис. 19).

Заключение

В настоящее время функционал программы позволяет значительно сократить трудозатраты на разработку документации по проектированию линий электропередач при типовом проектировании, а в особых случаях (например, при проектировании больших переходов) - также и на исследовательские расчеты. Совершенствование программы ведется в двух направлениях:

- расчет динамического действия токов короткого замыкания на провода - расчет проводов на схлестывание при КЗ (сам расчет токов короткого замыкания в проводах и грозозащитных тросах, а также оценка его термического действия производится в программе EnergyCS TKZ);
- расчеты по отводу земель и по вырубке просек.

Николай Ильичев, к.т.н., доцент **CSoft** Тел.: (495) 913-2222 E-mail: ilichev@csoft.ru