Одна из самых больших опасностей, подстерегающих металлические конструкции, — электрохимическая коррозия, то есть разрушение металла, сопровождаемое появлением электрического тока.

Этот наиболее распространенный вид коррозии (разрушение металлических изделий в пресной и морской воде, в атмосфере, почве, коррозия машин и аппаратов в химической промышленности и т.д.) наблюдается в случае взаимодействия металлов с различными электролитами — водой, почвой, химическими веществами; при этом корродирующая поверхность выступает в качестве короткозамкнутого многоэлектродного гальванического элемента. Материальный эффект электрохимического разрушения (растворения) сосредоточен на анодных участках металла, термодинамически неустойчивого в данных коррозионных условиях.

Уменьшить скорость электрохимической коррозии призвана электрохимическая защита (ЭХЗ), заключающаяся в катодной или анодной поляризации металлической конструкции. Катодная защита внешним током осуществляется при помощи постоянного тока от внешнего источника: к отрицательному полюсу (катоду) присоединяется защищаемый металл, а к положительному — дополнительный электрод (заземление), поляризуемый анодно. При протекторной защите конструкция соединяется с металлом, имеющим более отрицательный потенциал. На практике шире применяется катодная защита.

Для автоматизированного расчета электрохимзащиты магистральных трубопроводов на основе РД 153−39.4−039−99 «Нормы проектирования электрохимической защиты магистральных трубопроводов и площадок МН» разработана система ElectriCS ECP 1 (на сегодня доступна первая версия этого программного продукта).

В среде ElectriCS ECP выполняются следующие виды расчетов:

  • электрические характеристики защищаемых объектов;
  • параметры установок катодной защиты трубопроводов;
  • параметры подпочвенного анодного заземления;
  • параметры глубинного анодного заземления;
  • мощность на выходе катодной станции;
  • протекторная защита.

Все расчеты можно производить как по отдельности, так и в виде технологических цепочек, когда исходные данные для определенного типа расчета автоматически берутся из результатов предшествующих расчетов, выполненных в рамках одного проекта. Так, при расчете анодного заземления сила стекающего тока на начало и конец эксплуатации либо вводится автономно, либо автоматически берется из результатов расчета установок катодной защиты. Таким же образом можно производить расчет характеристик защищаемого объекта и т.д.

Расчет электрических характеристик защищаемых объектов

Основными параметрами, характеризующими величину и распределение защитного тока, являются электрические характеристики защищаемых объектов. Исходными данными для их определения служат диаметр трубопровода, марка стали и толщина стенки трубы, глубина укладки трубопровода, сопротивление изоляции и удельное сопротивление грунта вдоль трубопровода. Удельное электрическое сопротивление грунта на глубине укладки трубопровода определяется по данным изысканий: измерения выполняются через каждые 100 метров и дополнительно во всех местах понижения рельефа (овраги, реки, ручьи, болота и т.п.).

Первичными электрическими параметрами трубопровода, получаемыми в результате расчета, являются переходное и продольное сопротивление. К вторичным электрическим параметрам относятся постоянная распространения тока и входное или характеристическое сопротивление, которые вычисляются через переходное и продольное сопротивление.

Для расчета электрических характеристик защищаемых объектов необходимо ввести исходные данные, а также указать характеристики грунтов вдоль трубопровода. Пример ввода исходных данных и просмотра результатов расчета приведен на рис. 1.

Рис. 1 Рис. 1

Расчет параметров установок катодной защиты трубопроводов

В качестве исходных данных для расчета установок катодной защиты используются результаты расчета характеристик защищаемого объекта, а также удельное электрическое сопротивление грунта в поле токов катодной защиты, которое берется из характеристик грунта вдоль трубопровода.

Основные расчетные параметры катодной защиты — сила тока установки катодной защиты и длина защитной зоны, создаваемой этой установкой.

Для определения параметров установок катодной защиты необходимы ввод исходных данных и расчет характеристик объекта. Пример ввода исходных данных и просмотра результатов расчета установок катодной защиты и мощности УКЗ показан на рис. 2.

Рис. 2 Рис. 2

Расчет параметров подпочвенного анодного заземления

Подпочвенное анодное заземление устанавливается в грунтах при глубине погружения 10 м и ниже — с горизонтальным, вертикальным или комбинированным расположением электродов.

Исходные данные для расчета заземления включают его конструктивные характеристики (длина и диаметр электрода, расстояние между электродами и т.д.), удельное электрическое сопротивление грунта в месте расположения анодного заземления и силу тока, стекающего с заземления. Последний из перечисленных параметров может быть автоматически взят из результатов расчета установок катодной защиты.

Основные расчетные параметры — необходимое число электродов и сопротивление растеканию заземления.

Ввод исходных данных и просмотр результатов расчета подпочвенного анодного заземления проиллюстрированы на рис. 3.

Рис. 3 Рис. 3

Расчет параметров глубинного анодного заземления

Глубинное анодное заземление устанавливается в следующих случаях:

  • при удельном электрическом сопротивлении верхнего слоя грунта в два раза более высоком, чем сопротивление подстилающего слоя;
  • при недостаточной площади, не позволяющей разместить подпочвенное анодное заземление;
  • при затруднениях с прокладкой кабельной или воздушной анодной дренажной линии;
  • при невозможности удалить анодное заземление на расчетное расстояние от защищаемого объекта.

Исходными данными для расчета глубинного анодного заземления являются конструктивные характеристики (диаметр электрода, наличие засыпки электрода и т.п.), удельное электрическое сопротивление грунта вдоль электрода глубинного заземления и сила тока, стекающего с заземления. Последний из перечисленных параметров может быть автоматически взят из результатов расчета установок катодной защиты.

Основные расчетные параметры — оптимальная длина рабочей части глубинного заземления и сопротивление растеканию заземления.

Для расчета параметров необходимо ввести исходные данные, а также характеристики грунта вдоль глубинного анодного заземления. Ввод исходных данных и просмотр результатов расчета показаны на рис. 4.

Рис. 4 Рис. 4

Расчет мощности УКЗ

Исходными данными для расчета мощности УКЗ служат входное сопротивление трубопровода, сопротивление анодного заземления, сила тока катодной установки и характеристики дренажного провода.

Основные расчетные параметры — напряжение и мощность УКЗ.

Помимо исходных данных необходимы результаты расчета параметров установок катодной защиты и анодного заземления (подпочвенного или глубинного). Если в проекте представлены оба результата расчета анодного заземления, используются данные подпочвенного.

Расчет протекторной защиты

Протекторная защита от подземной коррозии устанавливается в следующих случаях:

  • на трубопроводах при сопротивлении изоляции не менее 3*102 Ом*м2;
  • на трубопроводах в комплексе с установками катодной защиты для обеспечения защитного потенциала на участке между установками;
  • для защиты кожухов на переходах через железные и автомобильные дороги;
  • для защиты днищ отдельных резервуаров.

Исходными данными для расчета протекторной защиты являются сопротивление изоляционного покрытия, диаметр трубопровода, электрохимические характеристики протекторов и удельное электрическое сопротивление грунта вдоль трубопровода.

Основные расчетные параметры — сила тока в цепи «протектор — труба», длина защищаемого участка и срок службы протекторов.

Для расчета следует ввести исходные данные для протекторной защиты и характеристики грунта вдоль трубопровода. Ввод исходных данных и просмотр результатов расчета показан на рис. 5.

Рис. 5 Рис. 5

Результаты расчета, причем в любой необходимой пользователю форме, можно вывести в MS Word. На рис. 6 и 7 приведен пример результатов, представленных в виде таблиц.

Рис. 6 Рис. 6
Рис. 7 Рис. 7

Система ElectriCS ECP работает под управлением MS Windows (не ниже NT 4.0). В качестве документатора используется MS Word (2000 и выше). Минимальные требования к компьютеру: ПК типа Pentium II c оперативной памятью 64 Мб.

Применение ElectriCS ECP значительно повышает производительность труда проектировщиков в части расчета электрохимзащиты. А благодаря возможности многовариантных расчетов ЭХЗ улучшается и качество проекта.

  1. Разработчик — компания Consistent Software
Александр Салин
д.т.н., с.н.с.
Ивановский государственный
энергетический университет
Тел.: (4932) 38−4776
E-mail: salin@dsn.ru